Exponential concentration for First Passage Percolation through modified Poincare19 einequalities
نویسنده
چکیده
Résumé: On obtient une nouvelle inégalité de concentration exponentielle pour la percolation de premier passage, valable pour une large classe de distributions des temps d’arêtes. Ceci améliore et étend un résultat de Benjamini, Kalai et Schramm [5] qui donnait une borne sur la variance pour des temps d’arêtes suivant une loi de Bernoulli. Notre approche se fonde sur des inégalités fonctionnelles étendant les travaux de Rossignol [21], Falik et Samorodnitsky [9].
منابع مشابه
2 6 Se p 20 06 Exponential concentration for First Passage Percolation through modified Poincaré inequalities ∗
Résumé: On obtient une nouvelle inégalité de concentration exponentielle pour la percolation de premier passage, valable pour une large classe de distributions des temps d’arêtes. Ceci améliore et étend un résultat de Benjamini, Kalai et Schramm [5] qui donnait une borne sur la variance pour des temps d’arêtes suivant une loi de Bernoulli. Notre approche se fonde sur des inégalités fonctionnell...
متن کاملOn the concentration and the convergence rate with a moment condition in first passage percolation
We consider the first passage percolation model on the Zd lattice. In this model, we assign independently to each edge e a non-negative passage time t(e) with a common distribution F . Let a0,n be the passage time from the origin to (n, 0, · · · , 0). Under the exponential tail assumption, Kesten (1993) and Talagrand (1995) investigated the concentration of a0,n from its mean using different me...
متن کاملConstruction of a Short Path in High-dimensional First Passage Percolation
For first passage percolation in Zd with large d, we construct a path connecting the origin to {x1 = 1}, whose passage time has optimal order log d/d. Besides, an improved lower bound for the "diagonal" speed of the cluster combined with a result by Dhar (1988) shows that the limiting shape in FPP with exponential passage times (and thus that of Eden model) is not the euclidian ball in dimensio...
متن کاملPERCOLATION, FIRST-PASSAGE PERCOLATION, AND COVERING TIMES FOR RICHARDSON’S MODEL ON THE n-CUBE
Percolation with edge-passage probability p and first-passage percolation are studied for the n-cube Bn = {0, 1} with nearest neighbor edges. For oriented and unoriented percolation, p = e/n and p = 1/n are the respective critical probabilities. For oriented first-passage percolation with i.i.d. edge-passage times having a density of 1 near the origin, the percolation time (time to reach the op...
متن کاملOn the Markov Transition Kernels for First Passage Percolation on the Ladder
We consider the first passage percolation problem on the random graph with vertex set N×{0, 1}, edges joining vertices at a Euclidean distance equal to unity, and independent exponential edgeweights. We provide a central limit theorem for the first passage times ln between the vertices (0, 0) and (n, 0), thus extending earlier results about the almost-sure convergence of ln/n as n → ∞. We use g...
متن کامل